Machine Learning with Python example
import pandas as pd import pylab as pl import numpy as np train=pd.read_csv('https://raw.githubusercontent.com/yhat/DataGotham2013/master/notebooks/data/credit-data-trainingset.csv') test=pd.read_csv('https://raw.githubusercontent.com/yhat/DataGotham2013/master/notebooks/data/credit-data-testset.csv') pd.value_counts(train.serious_dlqin2yrs).plot(kind='bar') pd.value_counts(train.number_of_dependents).plot(kind='bar') pd.crosstab(train.serious_dlqin2yrs,train.number_of_times90_days_late) test.head() from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.svm import SVC featuresTest = ['revolving_utilization_of_unsecured_lines', 'debt_ratio', 'monthly_income', 'age', 'number_of_times90_days_late'] featuresTrain = ['RevolvingUtilizationOfUnsecuredLines', ...